Approximation of the number of roots that do not lie on the unit circle of a self-reciprocal polynomial
Објеката
- Тип
- Саопштење са скупа штампано у изводу
- Верзија рада
- објављена
- Језик
- енглески
- Креатор
- Dragan Stankov
- Извор
- The book of abstracts XIV symposium "mathematics and applications” Belgrade, Serbia, December, 6–7, 2024
- Уредник
- Miljan Knežević, Aleksandra Delić
- Издавач
- Univerzitet u Beogradu, Matematički fakultet
- Датум издавања
- 2024
- Сажетак
- We introduce the ratio of the number of roots not equal to 1 in modulus of a reciprocal polynomial Rd(x) to its degree d. For some sequences of reciprocal polynomials we show that the ratio has a limit L when d tends to infinity. Each of these sequences is defined using a two variable polynomial P(x,y) so that Rd(x) = P(x,xn). For P(x,y) we present the theorem for the limit ratio which is analogous to the Boyd-Lawton limit formula for Mahler measure. We present a double integral formula for approximation the limit ratio. In a previous paper we have calculated the exact value of the limit ratio of polynomials correlated to many bivariate polynomials having small Mahler measure introduced by Boyd and Mossinghoff. We demonstrate here that the double integral formula gives the value very close to the exact value (the error is < 10−5. We show that the limit ratio of the sequence P(x,xn) is not always equal to the limit ratio of the sequence P(yn,y) unlike Mahler measure.
- почетак странице
- 44
- крај странице
- 44
- isbn
- 978-86-7589-197-0
- Subject
- reciprocal polynomial, envelope, unimodular roots
- COBISS број
- 158252041
- Шира категорија рада
- М60
- Ужа категорија рада
- М64
- Је дио
- Partially supported by Serbian Ministry of Education and Science, Project 174032
- Права
- Отворени приступ
- Лиценца
- All rights reserved
- Формат
- Медија
- Stankov2MATPrimene24.pdf
Dragan Stankov. "Approximation of the number of roots that do not lie on the unit circle of a self-reciprocal polynomial" in The book of abstracts XIV symposium "mathematics and applications” Belgrade, Serbia, December, 6–7, 2024 , Univerzitet u Beogradu, Matematički fakultet (2024)
This item was submitted on 9. јануар 2025. by [anonymous user] using the form “Рад у зборнику радова” on the site “Радови”: http://drug.rgf.bg.ac.rs/s/repo
Click here to view the collected data.