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Abstract: Relatively largee deformations of the steel arch support in underground coal mines in the 

Republic of Serbia present one of the main problems for achieving, the planned production of coal. 

Monitoring of the critical sections of the steel arch support in the underground roadways is necessary 

to gather quality data for the development of a forecasting, model. With a new generation of 3D laser 

scanners that can be used in potentially explosive environments (ATEX), deformation monitoring, 

is facilitated, while the process of collecting, precise data is much shorter. In this paper, we used 

a combination of grey and stochastic system theory combined with an autoregressive process for 

processing, collected data and the development of a forecasting, model of the deformations of the 

steel arch support. Forecasted data accuracy based on the positions of the markers placed along the 

internal rim of support construction shows high accuracy with MAPE of 0.2143%. The proposed 

model can successfully be used by mining, engineers in underground coal mines for steel arch support 

deformations prediction, consequentially optimizing, the maintenance plan of the underground 

roadways and achieving, planned production. 

Keywords: steel arch support; deformation forecast; time series; grey-stochastic simulation; autoregression; 

underground coal mining, 

1. Introduction 

For the process of production of mineral resources in underground mines to proceed 

smoothly, it is necessary to ensure the functionality and stability of the underground rooms. 

Sometimes, to ensure both functionality and stability of the underground roadways, which 

are directly related, it is necessary to install a suitable support substructure. The support 

takes static and dynamic loads from the rock mass and begins to deform over time. For 

the unhindered passage of loading, and transport machinery, it is necessary to design the 

underground roadway considering, the minimum dimensions of the free cross-section of 

the underground roadway, including the legally defined minimum safety distances from 

the equipment to the walls and roof of the roadWay. As time passes, the underground 

support suffers deformations, and it can happen that the minimum dimensions are violated, 

after which the transportation and export of useful mineral resources are suspended. In 

such cases, it is necessary to proceed with the reconstruction of the underground roadway, 

which can have a significant impact on the economic operation of the mine, because the 

reconstruction is both a financially and time-consuming process that impairs continuous 

production. To avoid such situations, it is necessary to conduct systematic monitoring of 

deformations of the support construction and provide a forecast of deformations. With 

proper forecasting, mining,engineers can react in a timely manner and plan the replacement 

of the underground support in the necessary sections of the underground roadway. In this 

way, strategic management of the functionality of underground rooms and continuous 

production is achieved. The use of a laser scanner or similar instrument with the possibility 

of gathering, high-accuracy data is necessary to obtain deformation data that can be used 

for analysis and forecasting the future states of the support construction. 
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Various approaches can be used to obtain future states of support construction. Defor- 

mation forecast has been the subject of research by many authors, with different approaches 

for prediction of tunnel surrounding rock displacement, structural deformations prediction, 

deformations of the lake bottom, landslide deformations, slope deformations, displace- 

ments of mining roadways, and so on. Wu et al. [1] used two methodologies, support 

vector machines and artificial neural networks, to predict tunnels surrounding, rock dis- 

placements; though the support vector machine gave more accurate predictions, it was 

more time-consuming than the artificial neural network. Luo et al. [2] proposed a model 

based on temporal convolutional networks in their study for structural deformation pre- 

diction, which they verified with the cumulative strain data of the upper steel beam in 

the foundation pit in China as well as the structural subsidence data on the same location. 

Luan et al. [3] showed that the grey model GM(1,1) could be used for the prediction of the 

deformations on the lake bottom. Ma et al. [4] used tunnel geological information as well 

as monitoring, measurement data to determine factor weights, and extension theory was 

used for the prediction model of tunnel deformations. In their study, Rao et al. [5] used the 

grey model theory for the prediction of the large deformation of the tunnel. Guo et al. [6 

established a grey forecast model for rock deformation in a big tunnel cross section and 

concluded that it could be used in engineering practice. Prediction of the final displacement 

of underground structures based on the improved no equidistant grey Verhulst model 

was used by Han et al. [7]. Xiong [8] predicted displacements in tunnels surrounding rock 

using, the grey system theory. For landslide deformations, displacements were predicted 

by a model combining extreme learning, machines and grey wolf optimization by Zhang 

et al. [9], and by using a new grey model prediction by Wu et al. [10] as well as Li and 

Wu [11]. Slope deformation prediction was calculated using the grey model by Li et al. [12 

and Zhang et al. [13]. In the mining environment, multivariate singular spectrum analysis 

was used by Crnogorac et al. [14] for accurate gate road support deformation forecasting,. 

Zhu et al. [15] proposed mining roadway displacement forecasting using the support vector 

machine theory. Xie et al. [16] used a grey algebraic curve model for the prediction of the 

roof fall. 

The aim of this paper is to develop an accurate grey forecasting, algorithm for coal 

mines where large deformations of support constructions occur in a relatively short period 

of time. These deformations are the result of high underground pressure which occurs 

around the underground roadways, and the main factors for the occurrence of high un- 

derground pressure are bad geological conditions and poor physic-mechanical properties 

of the surrounding rock mass, as well as the presence of the clay which swells when in 

contact with water, adding additional pressure to support construction. In underground 

coal mines in the Republic of Serbia, the most used support for underground roadways is 

steel arch supports, followed by steel circular and wooden supports. Because of this, in our 

paper, we will focus on the deformations forecast in the case of the application of steel arch 

supports in underground roadways. 

This paper has four sections. In the section Materials and Methods, the forecasting, 

model of displacements of the steel arch support based on the grey system (1,1) and 

stochastic theory is described. A novel approach is used that considers the displacements of 

the markers along the steel arch support that better describes the real situation (an example 

was given for marker M4 and its movement along the x coordinate in both directions). 

Using, grey-stochastic simulation and the autoregrressive process, the configuration of the 

steel arch support was described and forecasted based on the observed data. For error 

estimation of the model due to the nature of the problem we described, besides the usual 

MAPE error approach, which deals with displacements of the marker along the x and y 

axes as two separated time series and does not consider the fitted position of the marker, 

we introduced the novel approach of model accuracy dealing, with the analysis of the 

closeness between fitted and observed position of the marker. The calculation process is 

shown in the section Numerical Example to represent the possibilities of this model. All 

steps of the calculation in the section Numerical Example are discussed, and the results, 
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efficiency, and the area of implementation of the model are represented. Results show 

that the model is capable, and it can be used, to solve real-time problems concerning the 

forecasting, deformations of the steel arch support in underground coal mines. 

2. Materials and Methods 

2.1. Displacement of the Steel Arch Support 

Due to the influence of the rock stress surrounding the underground roadway that is 

supported by steel arch support, deformations occur on the support construction. Time- 

dependent response of support construction under dynamic loads from the rock mass 

represents the dynamic of the displacement. Changes in underground pressure are the 

result of mining, operations and are manifested by changing, loads that the steel arch 

support bears. 

To describe the deformations, we will monitor the displacement of the seven markers 

that are positioned along, the lower edge of the steel arch support. Like in our previous 

research, without a loss of generality, we can make the upper and lower edge of the 

steel arch support equal, transforming, the two-dimensional steel arch support into one- 

dimensional support [14]. 

Starting, configuration of the steel arch support will be described with the starting 

coordinates (x, y) that are recorded by 3D laser scanner. Displacements in time represent 

vectors that can be described in any moment with positions on the x- and y-axis. It is 

especially important that all recorded data are in the same coordinate system. 

Displacement of the markers along - and -axis will be monitored in equal inter- 

vals to define positions of the markers in time and, by that, the deformations of the 

support construction. 

Figure 1 represents the positions of the markers (t = 0) and their displacements (t = 1). 

M6 (t=1) 

M1 (t=0),| +0 F M7 (t=0) 

Mi (t=1) MLN Y|Ay 

Figure 1. Positions of the markers (t = 0) and their displacements (t = 1).
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As seen from Figure 1, markers 1, 2, and 3 can change their positions with coordinates 

along y-axis with negative sign (—Ay) and along the xy-axis with positive sign (+Ax). Marker 

4 will change its coordinates in time by v-axis in negative sign (—Ay), and changes along 

the x-axis are expected to occur in both negative and positive directions (- Ax and +Ax). 

Markers 5, 6, and 7 will have negative signs for changes both along the y-axis (-Ay) and 

X-axis (—Ax). 

Positions of the markers in time are described by the equation 

Mi(t = 0) = {xx;yio},Vi c [1,N} 

Mi(tfl) — {Xm M j Ax(tfl);yiv Ay(t 1)}7Vi6 [LN] d) 

Mi(t) = {G — 1) + Ax(0);y;(t — 1) – Ay(0)}, vi e [1, NJ 
where N represents the total number of markers. 

The changes in the shape of steel arch support for a defined time interval (0, f) can be 

displayed via the marker union as follows: 

N 

| Mi(t),Vt e |0,T] (2) 
i=1 

where T represents the monitoring time interval, and for t = 0, yj and yj are the initial 

coordinates for the i-th marker. 

2.2. The Model of Support Deformation Forecasting 

2.2.1. Fitting, the Monitored Displacements 

The proposed model of support deformation forecasting, will be explained with respect 

to displacement of one marker M along x-axes. Let us consider a monitored time series of 

marker displacement along x-axes over time ! = 1,2,..., T. Denote monitored time series 

as AX(f) = (Axi,Ax»,...,Axr). Next, we define three different states of displacement 

series, namely non-negative, negative, and mixed. The series is in the non-negative state if 

all values of Ayj are greater than zero, while the series is in the negative state if all values 

of Ax; are smaller than zero. Values greater and smaller than zero are considered mixed 

series. The value of zero is rare and will not be included in modeling.. Hence, define 

NN,ifAx; > 0 
AX} = N,ifAx < 0 (3) 

MD,ifAx, >0NAx <0 

The model can deal with NN and N state of series, while MD state must be transformed 

into NN state. First, we define the vector of transformation coefficients for MD state 

as follows: 
1,ifAx; > 0 

K(t)={kt}m={ _{ifAfXKO,t:l,z,.„,T (4) 

Furthermore, we make product of k and A+z,, and result is transformed mixed state of 

series (TMD), shown below: 

kiAxi 

koAx> 

TMD — NN = |ksAx3| +=1,2,...,T (5) 

kiAx 

From this point, we continue to model the original NN and N state of series, and TMD 

state of series, in the same way. To obtain stationary displacement series, it is necessary to
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calculate the first order differencing, of non-negative or negative state of series AX{f). For 

the first difference, we write the following; 

A(Ax) = A – Ax, ı, =2,3,...,T (6) 

The result is stationary time series, and we can model the first difference, A(Ax+), 

t = 2,3,...,T, instead of level of Avy. Denote differenced series A(Ax) as Q(ft) = [q}}], 

t = 2,3,...,T,where q; = Axi – Ax}_ı,t = 2,3,..., T. To avoid confusion about denoting, 

the time, we map differenced series into new regular one Q(?), and it is shown below. 

_ š ŽŽl t=2 d+ = AXx, — Axı đi 

_3A | ar.|t=3 da=Axa—-Axy Mp q> 
AX()=|!=3 Ax| d7 | . Moob=|-) O 

|| : T A;cT t=T q =Axr-Axr_i dT. 

The number of elements in the new mapped series is less than in monitored series, 

for one. The first order difference produces a time series consisting, of negative and non- 

negative values, i.e., MD state of differenced series. It shows the necessity for transformation 

from state MD to state NN. Applying, Equations (2) and (3) on series Q(?), we obtain Q(f) as 

NN state. For simplicity, denote NN state of Q(t) series as P(f). In this way, we processed 

data to be modeled by the Grey system theory. 
The Grey system model GM(1,1), where first “1” denotes the order of derivative, and 

the second “1” denotes one-dimensional variable, will be used to fit and forecast the series 

P(t) [17-20]. 

For a series P(f) = (Pi, Pp,- - -, pr), a monotonically increasing cumulative series is 

defined as follows: 0) i 

w = {plft,a0,...„50} ) 
Elements of a cumulative series are calculated by Accumulated Generation Operation 

(AGO) as follows: 
t 

= } pi,t=1,2,...,T (9) 
i=1 

where pi! = pi, p = p + pp = iq 
Mean value of neighboring values of a series pua (t) is calculated in the following way: 

U p3, and so forth. 

1 
zP = S(pi? – pit,),t =2,3,. (0) 

The grey system model is described by the differential equation: 

ap =b (a1) 

The parameters a and b are estimated according to the least square criterion, 

[a b]T = argmmHY B b]THŽ = (BTB)žlBTY (12) 

a,b 

where 

- 
B-| 2 ly- 03) 

O ı Pr
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Equation (11) presents ordinary differential equation of the form: 

1 1 
dpi!) =f(t,PŠ ))dt (14) 

with initial condition pšlz)l = bi. Displacement is subject to random perturbation caused 

by random variation of the loading forces over time. It is hard to specify it in the model 

description, working, within the system. Such perturbations create noise in the monitored 

displacements and AGO series as well, and cannot be captured by Equation (14). When we 

take Equation (14) and assume that f (t, pšl)) is not deterministic function but stochastic, 

and add the noisy part to it, we obtain stochastic differential equation. So, we can create 

stochastic differential equation with additive noise part as follows: 

dp =f(t,p}”)dt+dw„t=1,2,.,.,T (15) 

where: 

dW,—Brownian motion, dW ~ N(0, Var) 

The grey system model is now transformed into stochastic system [21] 

dpi?) — {p – apji))dt + dW, p = P (6) 

Numerical approximation of pžl) is obtained from the explicit Euler-Maruyama dis- 

cretization [22]: 

piO = p{ih + (P – ap{i})At+AW,F= 1,2,...,T (17) 
t t 

using a uniform timestep of At with Brownian increments AW.,, and there is a fixed initial 

( ( value pti)l = Pi. Behavior of ptl), in the form of Equation (17), is only discrete in the time 

variable but not as random variable. Set At = %, qg < Tand AW, = W, – M, ı ~ N(O, Š), 

where Q is the number of timesteps in time T and N (0, %) is the normal distribution with 

expected value of 0 and variance %2 Variance in AGO series is oŽ and c is the time 

resolution coefficient, which is defined as follows: 

1,annual time resolution 

a = 4 12,monthly time resolution (18) 

365, daily time resolution 

Substituting, AW, ~ N (0, Š) in Equation (17), we obtain solution of the stochastic 

AGO process defined by Equation (16): 

02 p = pii, + (b - apii)At N(O,w),t 1,2,...,T (19) 

Assume we have a function, f: R—R, which depends on the solution, pžl), of the 

stochastic differential Equation (16) on the time interval [1,7]. Equation (19) presents the 

solution, and simulation of Equation (19) produces expected values for specific point in 

time of the AGO stochastic process: 

s 
1 EAG0 = ~, pl = 2,3,...,T,E4Ć0 = pi (20) 

s=1 

|
=
 

where 

S—the total number of simulations.
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Obviously, at every point in time, there is an adequate probability density function of 

AGO. Next, the Inverse Accumulated Generation Operation (LYAGO) is applied to recon- 

struct NN state of P(f) series as 

IAGO AGO _ pAGO { Ž'ziilc;o_E*” E/6O,t =1,2,....T-1 2D 

1 —p 

Reconstructed (fitted) NN state of P(f) series is of the following, form: 

P(t) = (p,Py...,Pi),t = 1,2,.„T (22) 

Let us remember that NN state of P(f) series equals the NN state of Q(t?) series. Hence, 

fitted NN state of Q(?) series is 

Q(0) = (n,(»...,}),t=1,2,.„T (23) 

By nature, Q(t) series is MD (mixed) series, and transformation from NN to MD state 

is performed by applying, Equation (5) on Q(f) series, 

MDQO(t) = M4y,t = 1,2,...,T,j > 0 (24) 

where 
1,ifqi > 0 4(})= {ka = :1Jdt = Ki(t) {kt}m { LI <0= bN.JT (25) 

For original NN and N state of series, reconstructed (fitted) series of displacement is 

as follows: 

A> Axi +Km | 
A#3 Axa + kl 

AX(t) = {Aši}eı = |a| = | Axa +M0a |,t=2,3,...,T (26) 

Ažt Axi_i + k14,1 

For original MD state of series, fitted series of displacement is calculated as: 

koAxi + qul 
AŽZ . 

Až3 ka|Axa + kiđo 

AX(t) = {Ašt}rxi = | 4| = | kjAxa +K65| | ,}=2,3,...,T (27) 

Af} 
kf\Axt_i +k;7qt\ 

Accuracy of the fitting at every point in monitoring time is estimated according to the 

absolute percentage error (APE): 

Axi; — Až 

X 
APEt—100><\ „t=2,3,...,T (28) 

where: 

Ax;—monitored displacement, 

A#i—predicted (fitted) displacement 

Mean value of APE, is known as mean absolute percentage error (MAPE); 

MAPE = ELZ APE,/(T – 1). MAPE indicates the accuracy of the fitting: model over 

the monitoring interval, and linguistic description is shown in Table 1 [23,24].
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Table 1. Linguistic description of model accuracy [23,24]. 

Linguistic Description MAPE (%) 

High accuracy <10 
Good accuracy 1020 

Reasonable accuracy 20-50 
Inaccurate >50 

2.2.2. Forecasting of Displacements 

Displacement forecasting is based on the simulation of Equation (19) from 7 to T + h, 

where h presents the number of points in time ahead. The prediction phase is over at point 

T, and forecasting phase starts. Having in mind that Equation (19) concerns simulation of 

AGO series, we obtain future values of AGO series beyond T as follows: 

2 

pl = p (p-api)Ati N(O,Ž]),t T+1,T+2,...,T+h _ (29) 

Simulation of Equation (29) produces expected values for specific points in the future 

of the AGO stochastic process: 

s 

EAG = 1} ply=7T+1,7+2,...,T+h;pl) 

= p + Žb — ap a)At+N{o,% ),t G0) 
=T+1,T +2,...,T +h;s= 1,2,...,S 

Applying, the same LAGO approach as we did in the prediction phase, the following; 

forecasted series is obtained: 

Q(t) {E,},t T+1,T+?,...,T+h (31) 

Forecasted Žt series is also in the NN state. Transformation from NN state to MD state 

of series is performed in the following, way: 

= -d_ _ 
MDO(tI) = tyq„t=T+1,T+2,....T+h,q,>0 (32) 

Analyzing, Equation (32), we can conclude that transformation coefficients series K“7(f) 

should also be forecasted. For that purpose, we apply autoregressive process (AR) over 

original K1(t) = {k?}T - t = 1,2,..., T series, and obtain reconstructed series as follows: 
x 

Ri() = {Mf} = P + BM , + BL J +...+ BO (33) 

where p is the order of the autoregressive process, and coefficients Bg, Bq, BZ, ... BZ of the 

linear combination are the parameters of the AR process. If we take into consideration that 

k? can take only 1 or —1 value, then following, conditions are used to define this series: 

R + 1,ifM > 0 1(t)=4KMM\ _ Me =p+ Ri(t) {kf} {fl,ifk?<0't p+l,p+2,...,T (34) 

Accuracy of the AR(p) model is calculated according to the following, equation: 

T nTRUE 

AC(%) = 100 x (35) t=p t 

T_p
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where n?RUE is assigned value one if f((] = k?,t c |p,T}, otherwise, zero. To define the 

order of the autoregressive process, we propose the modified window length selection for 

singular spectrum analysis (SSA). We only propose a way of selecting the order (p) without 

further discussion in theory. Hence, we validate our approach via the following test. The 

range of window length L in SSA is in 2 < L < T/2 [25-28]. Modified approach defines 

order of AR process as p * T/2 — w, where w presents the number of states of variable. 

Since we have only 1 and -1 values, i.e., only two states exist, we set w = 2. So, the order of 

regression is p * T/2 — 2. Suppose there is the series that is presented in Table 2. 

Table 2. Two-state time series. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 I8 19 20 21 22 2 2 

—1 1 1 -1 1 1 1 _1ı 1 1 -1 —1 1 -ı -1 1 _1ı 1 1 1 1 -1 -1 

Number of observations is T = 24, so the order of AR process is p * % —2 = 10. 

Partial autocorrelation function of the previous series is shown in Figure 2. 

H Sample Partial Autocorrelation Function 
o 

i 
[-] 
6 
o 
[=] 
5 
< 

s ı ı ı l l l 
% |} \' |} |} |} |} 

- . NI UV UDNNE ı li RgR gaga| 
[.)] T T T T T T T T 
E_ |j |j |j |j |j |j |j |j |j 

E -1 || || || || || || || || || 

(f„“ 0 2 4 6 8 10 12 14 16 18 20 

Lag 

Figure 2. Partial autocorrelation function of time series composed of 1 and —1 values. 

According to the modified approach, we can see that Lag,10 can be used as order of 

AR process, so p = 10. Coefficients fo, f#i, B2, - · -, Bio are presented in Table 3. 

Table 3. Coefficients of AR(10) process. 

Bo B B Bs Ba Bs 6 Br Bs Bo Bu 

—0.3773 —0.0185 0.4000 0.8103 —0.4382 —1.0494 —1.0120 0.0386 0.8052 0.6421 0.4043 

Reconstructed (fitted) time series, corresponding states (see Equation (34)), and model 

accuracy are shown in Table 4. 

The illustrative example shows that proposed selection of order of autoregressive process 
can be used to forecast future states of 1 and -1 time series. Applying, Equations (33) and (34) 

=q 
beyond T, we obtain forecasted series K (P), = T +1,7 +2,...,T + h. Forecasting the 

displacement for original NN and N state of series is based on Equation (26), where k? and 
= = 

di are replaced by k, and q,,respectively: 

= _ _ =1_ 
AX(t) ={Ax,} Axr ı+k,q„t=T+1T+2,...,T+h (36) 

hxl1
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Table 4. Fitted series with corresponding, states and model accuracy. 

t Fitted Value Fitted State Original State Comparison nTRUE 

11 0.6206 1 1 TRUE 1 
12 —1.4927 -1 -1 TRUE 1 
13 —0.4918 -1 -1 TRUE 1 
14 0.2566 1 1 TRUE 1 
15 —1.0000 -1 -1 TRUE 1 
16 —0.5794 -1 -1 TRUE 1 
17 0.8068 1 1 TRUE 1 
18 0.6231 1 -1 FALSE 0 
19 0.6360 1 1 TRUE 1 
20 0.6927 1 1 TRUE 1 
21 —0.1871 -1 1 FALSE 0 
22 0.9356 1 1 TRUE 1 
23 —0.1922 -1 -1 TRUE 1 
24 —0.6283 -1 -1 TRUE 1 

Accuracy: 100 x (12/(24 — 10)) = 85.71% Sum 12 

Note that AR(p) model is used only for the forecasting, phase, not for prediction 

(fitting;) phase. 

For original MD state of series, displacement forecasting is based on the application of 

Equation (27) beyond T as follows: 

= – =| - =1_ 
AX(F) = {Ax,}m = k|Ax, +kiq,,t=T+1lT+2,...,T+h (37) 

where Iz<(t) = {kt },t = T +1,T7 +2,...,T + h, is forecasted vector of transformation 

coefficients for MD state; see Equation (4). Forecasting of the vector I:<(t) is also performed 

by AR(p), in the same way as we did for series K“(f); see Equations (33) and (34). The 

model of fitting and forecasting the original MD state of series is shown in Table 5. 

Table 5. Model of fitting, and forecasting, the MD state of series. 

Fitting Phase * 

K(t) Ki(t) M 
t q APE, AX(t) e [-1,1] A(Axt) O(t) M e[-L1] AX(t) t 

Equation (4) Equation (7) Equa!aiggs(%?)*@l) Equation (25) Equation (27) Equation (28) 

1 An h 
2 Ax> k n n H k Ax]·k“lM 
3 Axa ka q da ii ka{Ax: + Mido AA 

4 AXa ka d5 % |I ki{Axs + Kida J 

T-1 Axr- kr-i dr-a jr-a a kr-{Axr-a +M} E O 1 
T Axr kr dTi dr o kr{Axr_ 100 x | ŠSkSaSl 

Forecasting Phase * 
= -d 

K(t) - K (t) _ 
_ Q(t) -4 AX(t) kt e [-1,1] i ki e |-1,1} 

Equations (33) and (34) Bquations OIO pquations(33) and (34) Equation (37) 
a = = _ = = =~ = T+1 · AXr, kra dr kra krnj|Axr +kradry| 

. = = = = = _ LE 
T+2 r kri dr> kr, kr+a|Axryi + kryadr| 
T+3 = = = =- = = = = 

XT+3 krya dr+a krya kr+a|AXrq + kryadraa| 

XT+h kryn dr+h krin kr+a|Axr+n-i + kry+ndr+h 

* from f = 1 to t = T—fitting, phase; from t} = T + 1 to T + h—forecasting, phase.
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The model of fitting and forecasting, the original NN and N state of series is similar, but 

the AR(p) process of K(f),k c [—1, 1| is excluded. In the same way, we model displacement 

along vy-axes. 

Finally, according, to Equations (1) and (2), we can forecast the changes in the shape of 

steel arch support as follows: 

m
=
 

AŽ,(š,·j„t),t:T+1,T+2,...,T+h (38) 
i=1 

2.2.3. Model Accuracy Based on Marker Position Error 

Accuracy of the fitting, model, which is expressed by MAPE, treats displacements 

along, x- and y-axes as two separated time series. However, our problem concerns the fitted 

position of marker, and it means that we must estimate the closeness between fitted and 

monitored position of marker. Accordingly, this approach of model accuracy estimation 

deals with analysis of an error between monitored and fitted position of marker [29,30]. 

Figure 3 shows the principle used to define the position error. 

I b 

i k
l 

(0,0) X (0,0) 

Figure 3. Error between monitored and fitted position of the marker. 

Nomenclature in Figure 3: 

M(x,y)—monitored position of marker 

M(x,y)—fitted position of marker 
_+ 
RM—monitored position vector of marker 

q M—angjle of monitored position vector with respect to Yx-axis 
R 
RM—tfitted position vector of marker 

qg M—angle of fitted position vector with respect to yx-axis 
5 
E—error vector of fitted position of marker 

qE—anglle error of fitted position vector, 0M — 0M 

o—angle between fitted position vector and error vector 

0—angle between error vector and monitored position vector, 180'—(qr + 0) 
_+ 
Pu—the projection of fitted position vector on monitored position vector 
_y 
Pr—the projection of error vector on monitored position vector 

The mechanism that we use to estimate fitting, error concerns how much a vector is 

equal to another vector, in the same direction. Desired direction is direction of monitored
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— n 
position vector. Accordingly, we calculate the vector projection of RA on the vector R 

as follows: 
–> + 

d — RM:RM > — — 
PM:pm]šwRM — HM RM=Pw,:1 + P (39) 

x -d d 
where 1 and J are unit vectors along - and v-axis, respectively. Magnitude of the vector 
_+ 
P equals 

–> 2 
\PM\ = \/(PMY)Z +{(Pw,) (40) 

_+ 
Similarly, magnitude of the vector P is as follows: 

– \/(ng)z + (PE_„)Z (41) 
. 
| 

= 
Monitored position vector of marker M(x,y) can be presented as a sum of vector RM 

— d 
and vector E, i.e., vector RM is a resultant of these two vectors: 

d d d 
R = RM + E (42) 

= 
Vector Ra can also be presented as resultant of the following, two vectors: 

d d d 
R= PM+PgE (43) 

Note that the following, equality does not hold, according to the triangle inequality: 

e d d — 

Ra| +| - |a| +| i 
In our case (see Figure 4), the triangle inequality is 

d d — |Ru} < |Ru| + | (45) 

The projection of error vector on monitored position vector of marker can be calculated 

from Equation (43) as follows: 
M ed M ed = 
Pr = R - PM (46) 

> — – —+ 
Vectors RM, P M, Pe are collinear, since they lie on the same line, so we can transform 

Equation (46) from vector to a scalar form in the following, way: 

. 
P 

\ _> , 
RM\ _ \PM\ (7) 

Obviously, Equation (47) presents the absolute error of marker position prediction. 

Absolute percentage error of fitted position of marker is defined as follows: 

d d 

u -|| APE ( \ P | (48) ) = 100 x 

Rv
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Accuracy of the fitting in every point in monitoring, time, with respect to marker 

position, is estimated according to the following, equation: 

\—} 

) 100 x — 

t R 

Mean absolute percentage error of marker position is shown below: 

Ć 
APE(\PE ,t=2,3,...,T (49) 

= 
y APE(\PE 

t) ii mt) 60) 

Since we are searching for the changes in the steel arch support shape, then we should 

define the error of shape prediction. According to Equations (2) and (49), error of predicted 

(fitted) shape of support can be defined in the following, way: 

“i) (51) 

The hypothetical data used in this paper include daily values of displacements of 

markers along the y- and y-axis, respectively. The period of monitoring is thirty days. This 

set of displacements is divided into two subsets, fitting, and forecasting, subsets. The period 

ranging from the first to the twenty-fifth day (25 values) was used as the fitting subset, 

and within this interval, we checked the model accuracy by comparing the fitted and 

monitored values of displacements. The second subset ranging from twenty-six to thirty 

days (5 values) was used as the validity subset, and in this period, we made a comparison 

between forecasted and monitored displacements. The positions of seven markers are 

defined around the internal rim of the steel arch support; see Figure 4. 

Š 
MAPE(\PE 

NI 
MAPE(U PrE 

i=1 

= 
)p zLZAPEGpE 

) N(T—1) 

3. Numerical Example 

Figure 4. Steel arch support with positions of the markers.
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The coordinates of markers during, the monitoring, period are presented in Table 6, 

while the corresponding, displacements are shown in Table 7. 

Table 6. Monitored coordinates of markers. 

MONITORED COORDINATES 

M1 M2 M3 M4 M5 M6 M7 
Day 

X y X y X y X y d y X y X y 

0 0.0 981.0  122.0 2736.0 498.0 3302.0 1700.0 3800.0 2902.0 3302.0 3278.0 2733.0 3400.0 981.0 
1 3.6 977.3 26.0  2732.1 502.3 3297.6 1695.6 3795.2 2897.5 3297.9 3274.0 2728.7 33964 977.6 

2 7.1 973.5 30.2  2728.1 507.0 3293.44 1691.3 3790.9 2892.9 3293.4 3269.8 2724.9 3392.8 974.0 
3 10.6 970.0 34.1 2724.2 511.3  3289.0 1686.6 3786.0 2888.7 3289.2 32659 27209 33893 #970.7 
4 14.0 966.3 38.1 27203 5158 3284.0 1682.3 37814 2884.2 3285.1 3261.8 2717.0 33858 967. 

5 174 ” 962.6 42.0 27162 520.1 32802 1677.7 3776.5 2880.0 32804 3257.9 2713.3 3382.2 963.6 
6 20.8 958.9 461 2712.2 524.4 32757 1681.9 3772.0 2875.x7 3276.1 3254.1 2709.3 3378.8 959.8 

7 24.3 955.4 50.2  2707.9 529.0 3271.2 1686.5 37674 2871.2 3271.7 32503 27054 33754 #956.2 
8 27.6 951.6 54.3 2703.8 533.4  3267.1 1682.2 3763.0 28669 3267.2 32464 2701.5 3371.9 952.7 

9 31.1 948.0 58.3 26996 537.8 3262.7 1686.7 3758.2 2862.6 3263.2 3242.7 26974 33683 949. 
10 347  944.2 62.4 26954 542.2 3258.2 1691.0 3753.4 2858.3 3258.6 3239.0 2693.8 3364.6 9454 

11 38.1 940.3 663 26914 546.6 3254.1 1686.8 3748.8 2853.8 3254.2 32352 2689.8 3361.2  941.7 
12 41.x7 9365 70.5 26874  551.0 3249.7 1691.4 3744.3 2849.5 3249.9 3231.3 26858 3357.x7  938.3 
13 45.2 932.8 74.6  2683.4  555.1 32455 16865 3739.7 28451 32453 32274 2681.9 3354.3 934.8 

14 48.5 929.2 78.6  26709.2 5594 3241.1 1682.1 3734.8 2840.7 3241.1 3223.2 2677.9 3350.x7 931. 
15 52.0 925.6 82.8 26751 563.7  3236.6 1677.4 3729.9 28364 32366 3219.3 2673.7 3347.1 927.6 

16 55.5 921.9 86.5 2671.0 568.3 3232.2 1673.0 3725.0 2832.3 3232.3 3215.6 2669.6 3343.7 924. 
17 59.0 918.1 90.3 26673 572.6 3228.0 1677.3 3720.3 2827.9 3227.8 3211.5 2665.6 3340.0 920.5 

18 62.5 914.4 94.2 2663.1 577.0 3223.60 1681.5 3715.3 2823.2 3223.3 3207.8 2661.6 3336.3 916.9 
19 65.9 910.8 98.3 2650.1 5814 3219.5 1685.x7 3710.2 2818.8 3219.0 3204.1 2657.5 3332.7 913.5 

20 694 907.2  202.4 26552 5859 32152 1690.1 37055 2814.5 3214.5 3200.3 2653.6 3329.0 909.8 
21 72.9 903.3 2064 26509 590.5 3210.8 1685.6 3700.8 2810.3 3210.3 3196.7 2649.3 33254 9064 
22 76.5 8995 · 210.6 26467 594.6 32065 1689.8 3696.0 2806.0 32057 3193.0 26451 3322.1 902.8 

23 79.8 8957  214.5  2642.6 599.0 3202.0 1694.2 36914 2801.4 3201.2 3189.0 2641.2 3318.8 899.2 
24 83.2 892.0  218.5  2638.5 603.2  3197.5 1689.9 3686.4  2797.0 3196.6 3184.9 26374 33154 #895.8 

25 867 8883 2224 26344 607.7  3192.5 16855 3681.8 2792.7 3192.5 3180.8 2633.1 3311.9 892.2 
26 90.2 884.0 2264 26306 &612.0 31884 1681.1 36774 2788.5 3188.1 31769 2628.9 33084 #888.6 

27 93.8 880.8 2303 526269 6164 3183.7 16763 3672.8 2784.5 3183.7 3173.2 2625.3 3304.9 885.0 
28 97.1 877.0 2344 2623.0 6209 31703 1671.9 3668.0 2780.3 3179.4 3169.3 2621.2 3301.3 #881.5 
29 1006 #873.3 238.0 ?2618.9 6253 3174.0 1667.6 3663.4 27759 31753 31652 2617.1 3297.8 878.1 

30 104.3  869.5  241.9 2614.9 6294 3170.2 1672.0 3658.x7 2771.7 3171.2 31613 2613.2 3294.2 874.4 

Time series related to displacements of marker M4 along the x-axis was used to show 

how the model works. Figure 5 presents displacements of marker M4 along the x-axis. 

6.00 , 

5.00 _ 

4.00 J 
3.00 J 
2.00 - 
ı.00 - 

E 0.00 
-1.00 0 1 2 3 4 5|6 7|8/|9 10/1112,|13 14 15 1617 18 19 20221 22 23 24 25 26 27 28 29 30 

-2.00 _ t 

-3.00 _ 

-4.00 _ 

-5.00 _ 

-6.00 - 

——UUMonitored displacements 

Figure 5. Displacements of the marker M4 along the x-axis.
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Table 7. Displacements of the markers. 

DISPLACEMENT 

D M1 M2 M3 M4 M5 M6 M7 

y Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay 

1 3.6 —3.7 4.0 —3.9 4.3 -4.4 -44 —4.8 -4.5 -4.1 —4.0 -4.3 —3.6 -3.4 

2 3.5 —3.6 4. —4.0 47 —4.2 -4.3 -4.3 —4.6 —4.4 -4.2 —3.9 —3.7 —3.5 

3 3.6 —3.5 4.0 —3.9 4.3 -4.4 -47 —4.9 —4.2 -4.3 —3.9 —4.0 —3.5 -3.4 

4 3.4 —3.7 4. —3.8 4.5 -4.3 -4.3 —4.6 -4.5 -4.1 -4.1 —3.9 —3.4 —3.6 

5 3.5 —3.6 3.9 —-4.2 4.3 -4.4 —4.6 —4.8 -4. —4.6 —3.9 —3.6 —3.6 —3.5 

6 3.4 —3.7 4. —4.0 44 —4.6 43 -4.5 -4.3 —4.4 —3.8 —4.0 —3.4 —3.8 

7 3.5 —3.5 4.2 -4.4 4.6 -4.4 4.6 —4.6 —4.6 -4.3 —4.0 —3.9 —3.3 —3.6 

8 3.2 —3.7 4. -4.1 44 —4.2 -44 -4.,4 -4.5 —4.5 —3.9 —4.0 —3.5 —3.5 

9 3.5 —3.6 4.0 —-4.2 4.5 -4.4 45 —4.8 -4.3 -4.1 —3.7 -4.1 —3.6 —3.6 

10 3.6 —3.8 4. -4.1 44 —-4.5 43 —4.7 —4.4 —4.5 —3.6 —3.6 —3.7 —3.7 

11 3.4 —3.9 3.9 —4.0 4.3 —4.2 —4.2 —4.6 -4.5 —4.4 —3.8 —4.0 —3.4 —3.5 

12 3.6 —3.8 4.2 -4.1 44 -4.3 4.6 -4.5 -4.3 -4.3 —3.9 -4.1 —3.5 -3.4 

13 3.5 —3.7 4. —4.0 4. —4.2 -49 —4.6 -4.5 —4.6 -4.1 —3.9 —3.3 —3.6 

14 3.4 —3.6 4.0 —-4.2 44 -4.4 -44 —4.9 —4.4 —4.2 -4.2 —4.0 —3.6 —3.7 

15 3.5 —3.5 4.2 -4.1 4.3 —-4.5 -47 —5.0 -4.3 —4.5 —4.0 -4.3 —3.5 —3.5 

16 3.6 —3.7 3.7 —4.0 4.5 -4.3 -455 —4.8 -4. —4.4 —3.7 —4.0 —3.4 —3.6 

17 3.4 —3.9 3.8 —3.7 44 —4.2 44 —4.7 —4.4 —4.5 -4.1 —3.9 —3.7 —3.7 

18 3.5 —3.7 4.0 —-4.2 4.6 -4.4 4.2 —5.0 —4.6 —4.4 —3.6 —4.0 —3.6 —3.5 

19 3.4 —3.6 41 —4.0 4.5 -4.1 41 —5.1 —4.4 -4.3 —3.7 -4.1 —3.7 —3.4 

20 3.5 3.7 4.0 —-4.2 44 -4.3 44 —4.7 -4.3 —4.5 —3.8 —4.0 —3.6 —3.7 

21 3.4 —3.9 3.9 -4.3 4.6 -4.4 -455 —4.8 —4.2 —4.2 —3.7 -4.3 —3.5 —3.5 

22 3.6 —3.8 43 —-4.2 4. -4.3 4.2 —4.7 —4.4 —4.6 —3.9 -4.1 -3.4 —3.6 

23 3.2 —3.9 3.9 -4.1 44 —-4.5 44 —4.6 —4.6 —4.4 —4.0 —4.0 —3.3 —3.5 

24 3.4 —3.7 4.0 —4.0 4.3 —4.6 -4.3 —5.0 —4.4 —4.6 -4.1 —3.8 -3.4 —3.4 

25 3.5 —3.6 3.9 —3.9 44 -4.9 -44 —4.6 -4.3 -4.1 —4.0 -4.2 —3.6 —3.6 

26 3.4 —3.8 4.0 —3.8 4.5 -4.1 —4.6 -4.5 —4.2 —4.4 —3.9 —3.8 -3.4 —3.5 

27 3.6 —3.7 3.9 —3.7 4.3 —4.8 -4.8 —4.6 -4. —4.5 —3.7 —3.6 —3.5 —3.6 

28 3.4 —3.9 4.0 —3.9 4.5 -4.4 -44 —4.8 —4.2 -4.3 —3.8 -4.1 —3.6 —3.5 

29 3.5 —3.7 3.6 -4.1 44 -4.7 —4.2 —4.6 —4.4 —4.2 -4.1 —4.0 —3.5 —3.4 

30 3.7 —3.8 3.9 —4.0 4.0 -4.4 44 -4.5 —4.2 -4.1 —3.9 —3.9 —3.6 —3.7 

Despite the randomness in displacement series, there are alvays some kinds of gov- 

erning laws. From the previous plot, we can see that the displacement series is too complex 
and cannot be considered a regular one. According to Equation (3), the series belongs to a 

mixed time series (MD state). Vector of transformation coefficients for the MD state, and 

transformation from the MD state to the NN state, are shown in Table 8 and Figure 6. 

Table 8. Transformation from MD to NN state of series. 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

MD -44 -43 -47 -43 -4.6 4.3 4.6 -44 45 4.53 —4.2 4.6 -49 —44 -47 

K —1 —1 -1 —1 —1 1 1 —1 1 1 —1 1 —1 —1 —1 

NN 44 4.3 47 43 4.6 4.3 4.6 44 45 4.53 4.2 4.6 4.9 44 47 

t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

MD -45 44 4.2 4.1 44 -45 4.2 44 -4535 —44 -46 ——48 -44  —-4.2 44 

K —1 1 1 1 1 —1 1 1 -1 -1 —1 —1 —1 —1 1 

NN 45 44 4.2 4.1 44 4.5 4.2 44 4.53 44 4.6 4.8 44 4.2 44 
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Figure 6. Transformation from MD to NN state of series. 

By the first difference of the NN state of the series, we obtain stationary time series, as 

is shown in Table 9 and Figure 7. 

Table 9. First difference of NN state of the series. 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Diff. 
NN —0.1 0.4 —0.4 0.3 —0.3 0.3 —0.2 0.1 -0.2 · —-0.1 0.4 0.3 —0.5 0.3 

t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Diff. 
NN -02  -0.1 -02 -0.1 0.3 0.1 —0.3 0.2 —0.1 0.1 0.2 0.2 -04 · —0.2 0.2 

1.0 

-1.0 - 

——Differenced NN state 

Figure 7. Stationary series. 

Obviously, the stationary time series belongs to the MD state of the series, so we must 

transform it to the NN state of the series. The way of transformation is presented in Table 10 

and Figure 8.
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Table 10. Transformation from MD stationary to NN state of series. 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

MD —0.1 0.4 —0.4 0.3 —0.3 0.3 —0.2 0.1 -0.2 · -0.1 0.4 0.3 —0.5 0.3 

K -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 

NN 0.1 0.4 0.4 0.3 0.3 0.3 0.2 0.1 0.2 0.1 0.4 0.3 0.5 0.3 

t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

MD -02 —— .1 -02 -0.1 0.3 0.1 —0.3 0.2 —0.1 0.1 0.2 0.2 -04 · —0.2 0.2 

K -1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 

NN 0.2 0.1 0.2 0.1 0.3 0.1 0.3 0.2 0.1 0.1 0.2 0.2 0.4 0.2 0.2 

1.0 

-1.0 - 

——=EStationary MD state ———NN state 

Figure 8. Transformation of stationary MD state of series. 

Elements of the transformed stationary series can now be accumulated, and the results 

of the AGO process are shown in Table 11 and Figure 9. Accumulation is performed only 

on values from } = 2 to t = 25 (fitting, period). 

Table 11. AGO series of transformed stationary series. 

t P(t) POD(t) t P(t) PO(t) 

1 14 0.5 3.6 

2 0.1 0.1 15 0.3 3.9 

3 0.4 0.5 16 0.2 4.1 

4 0.4 0.9 17 0.1 4.2 

5 0.3 1.2 18 0.2 44 

6 0.3 1.5 19 0.1 45 

7 0.3 1.8 20 0.3 4.8 

8 0.2 2.0 21 0.1 4.9 

9 0.1 2.1 22 0.3 5.2 

10 0.2 2.3 23 0.2 5.4 

11 0.1 2.4 24 0.1 5.5 

12 0.4 2.8 25 0.1 5.6 

13 0.3 3.1 
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Figure 9. Accumulated Generation Operation for transformed stationary series (fitting; period). 

The following, matrices are used to calculate parameters a and b of the grey modeling;: 

[-0.30 
—0.70 
—1.05 
—1,35 
—1.65 
—1.90 
—2.05 
—2.20 
—2,35 
—2.60 
—2.95 

B= |-—3.35 
—3.75 
—4.00 
—4.15 
—4.30 
—4,45 
—4.65 
—4.85 
—5.05 
—5.30 
—5.45 

| -5.55 – 
I 
I
 

o
 

o 
e 

— [0.4] 

0.4 

0.3 

0.3 

0.3 
0.2 
0.1 

0.2 

0.1 

0.4 

0.3 

0.5 

0.3 
0.2 
0.1 

0.2 

0.1 

0.3 
0.1 

0.3 
0.2 
0.1 

|0.1] 

(52) 

According to Equation (12), we obtain a = 0.03454 and b = 0.35021. The parameters of 

the grey stochastic process are presented in Table 12. 

Table 12. Parameters of stochastic AGO series of transformed stationary series. 

Parameter Value 

Variance of AGO series (oŽ) 2.88 
Time (7T) 30 days 

Number of steps (qg) 30 
Timestep of At 1 day 

Daily time resolution—coefficient (q?) 365 
Brownian N 

increments — AW, = W, – W,_ı ~ N(O, %) 
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Numerical approximation of pšl) is based on the following Euler-Maruyama discretization: 

2. piO = p{i), + (0.35021 — 0.03454-p{!h, ).1+ N(O, %)t =2?,3,...,25;pt) =0.1 (53) 

Figure 10 shows simulations obtained by Equation (53). 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0.0 r r r I I T — I I I I I I TI I I ——— 

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

t 

AGO series sim 1 sim 2 sim 3 sim 4 

Figure 10. Four simulations of AGO series. 

After one thousand simulations of Equation (53), the following, expected AGO and 

corresponding, IAGO outcomes are presented in Table 13. Figure 11 presents the probability 

distribution function of the AGO series for t = 10. 

Table 13. Expected AGO and corresponding, T[AGO outcomes. 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

E(AGO) 0.10 0.44 0.77 1.09 1.40 1.70 1.99 2.27 2.53 2.79 3.04 3.28 3.52 3.74 

E(IAGO) 0.10 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.26 0.26 0.25 0.24 0.23 0.23 

t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

E(AGO) 3.96 4.17 4.37 4.57 4.75 4.94 5.11 5.28 5.45 5.61 

E(IAGO)0.21 0.21 0.20 0.20 0.19 0.19 0.17 0.17 0.17 0.16 
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Figure 11. Probability distribution function of AGO series for t = 10 (simulation of Euler- 

Maruyama equation). 

Applying, Equation (5) on the expected LAGO outcomes, we obtain the first difference 

series of displacements for t = 2, 3, ... , 25 reconstructed; see Table 14.
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Table 14. The first difference series of displacements reconstructed. 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

E(AGO) 0.10 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.26 0.26 0.25 0.24 0.23 0.23 

K -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 

MD —0.1 034 -033 %0.32 -031 030 -029 028 -—0.26 —0.26 0.25 0.24  -0.23 0.23 

t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

E(đAGO)0.21 0.21 0.20 0.20 0.19 0.19 0.17 0.17 0.17 0.16 

K -1 -1 -1 -1 1 1 -1 1 -1 1 

MD -0.21 -0.21 —-—0.20 —0.20 #(0.19 0.19  -0.17 047 · -0.17 0.16 

To obtain the reconstructed (fitted) MD state of the series of displacements, we applied 

Equation (27), and the results with the corresponding absolute percentage errors are shown 

in Table 15 and Figure 12. 

Table 15. Reconstructed displacements and absolute percentagje errors. 

t Original Displacement Fitted Displacement APE (%) 

1 -44 
2 -4.3 —4.30 
3 -47 —4.64 1.32 
4 -4.3 -4.37 1.53 
5 —4.6 —4.62 0.45 
6 4.3 4.29 0.25 
7 4.6 4.60 0.01 
8 -44 -4.31 1.97 
9 4.5 4.68 3.94 
10 4.3 4.24 1.49 
11 —4.2 —4.04 3.85 
12 4.6 4.45 3.29 
13 -4.9 -4.84 1.23 
14 -44 —4.67 6.04 
15 -47 —4.63 1.56 
16 —4.5 —4.49 0.32 
17 44 4.29 2.54 
18 4.2 4.20 0.03 
19 4.1 4.00 2.33 
20 44 4.29 2.54 
21 —4.5 —4.59 1.90 
22 4.2 4.33 3.09 
23 44 4.37. 0.59 
24 -4.3 -4.23 1.58 
25 -44 -446 1.40 
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Figure 12. Original and fitted displacements of marker M4 along x-axis. 

The mean absolute percentagje error (MAPE) is 1.88%, and according to Table 1, the 

fitting, model of the displacement of marker M4 along the x-axis belongs to a highly accurate
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class. Fitting, errors of displacement for all markers along the y- and y-axis are presented in 

Table 16. 

Table 16. MAPE for all markers during, prediction period t = 1, 2, ... , 25. 

M1 M2 M3 M4 M5 M6 M7 

x y d y x y x y d y x y d y 

MAPE(%) · 2.01 1.28 224 225 1.92 1.38 1.88 2.54 1.51 2.67 1.95 2.81 1.67 1.64 

The MAPE of the model is 1.98% = 2%, which points out that the model is capable 

of forecasting, future values of displacement. AGO series beyond T7 = 25 are forecasted by 

simulation of Equation (52), for t = 26, 27, 28, 29, 30; and outcomes of expected AGO and 

corresponding,  LIAGO series are shown in Table 17. 

Table 17. Expected AGO and corresponding, IAGO outcomes for } = 25, 26, ... , 30. 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

E(AGO) 0.10 0.44 0.77 1.09 1.40 1.70 1.99 2.27 2.53 2.79 3.4 328 352 3.74 

E(IAGO) 0.10 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.26 0.26  0.25 024 023 #0.23 

t 16 17 18 19 20 21 22 23 24 25 26*%* 27* 28% 2% ·=Đ «30* 

E(AGO) · 3.96 4.17 4.37 4.57 4.75 4.94 5.11 5.28 5.45 5.61 5.x76 590 605 5619 #6.32 

E(TAGO) 0.21 0.21 0.20 0.20 0.19 0.19 0.17 0.17 0.17 0.16 0.415 044 015 044 4#·(.3 

* red color indicates forecasted values. 

Application of Equation (5) for the forecasting period requires the transformation 

coefficient series K1(f) to also be forecasted. The two-state time series of the first difference 

monitored data is presented in Table 18. 

Table 18. Two-state time series of marker M4 along x-axis-the first difference, K1,t = 2,3,...,25. 

1 2 3 4 5 6 7 8 9 IO 11 12 13 14 15 16 I7 I8 19 20 21 22 23 24 25 

-1 1 -1 I -ı 1I -1 1 - — 1 1 -1 1 -1 -1 -—1 -1 1 1 —1 1 - l1 

~ 
The order of the AR process equals p * % —2 = 10. The plot of the partial auto- 

correlation function for two-state time series, which is presented in Table 16, is shown in 

Figure 13. The parameters of the AR(10) process are presented in Table 19. 

F Sample Partial Autocorrelation Function 
• 2 T T T T T T T T T 
k | | | | | | | | | 
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Figure 13. Partial autocorrelation function of time series composed of 1 and —1 values for first 

difference displacements (M4x).
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Table 19. Coefficients of AR(10) process for M4x-the first difference. 

Bs Ba Bs B Br Ba B Bu 

—0.6724 0.0797. —0.8761 0.1300 —0.3631  -0.4281  „-0.10883 · —0.9662 0.2305 

Reconstructed (fitted) time series of M4y, corresponding states (see Equation (34)), and 

model accuracy are shown in Table 20 and Figure 14. Table 21 shows the accuracy of the 

AR(10) process for all markers separately. 

Table 20. Fitted series with corresponding, states, and model accuracy for M4xy-the first difference. 

t Fitted Value  Fitted State Original State Comparison nTRUE 

12 —0.1352 -1 FALSE 0 

13 0.8596 TRUE 
14 —0.7799 -1 — TRUE 

15 0.5667 TRUE 
16 —1.2877 -1 — TRUE 

17 —0.3588 -1 _ TRUE 
18 —0.0052 -1 _ TRUE 
19 —0.6395 -1 — TRUE 

20 1.4211 TRUE 

21 0.2184 TRUE 

22 —0.5789 -1 — TRUE 

23 1.2929 TRUE 

24 —0.4315 -1 — TRUE 

25 —0.1421 -1 FALSE 0 

Accuracy: 100 x (12/(24 — 10)) = 85.71% Sum 12 

1 5 
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Original two state series Fitted two state series 

Figure 14. Monitored and fitted two-state series for M4y-the first difference. 

The expected accuracy of the AR(10) model is 92.34%. Besides the transformation 

coefficient series K“(t) that related to the first difference, the original series of displacements 

of marker M4 along the x-axis is also related to the transformation coefficient series K(f); 

see Table 6 (transformation from the MD to NN state of series). The order of the AR process 

for series K(ft) equals p > % — 2 = 10.5, and we adopt the value of 10. The plot of the 

partial autocorrelation function for two state time series, which is presented in Table 10, is 

shown in Figure 15. The parameters of the AR(10) process for the K(t) series are presented 

in Table 22.
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Table 21. Accuracy of AR(10) model for all markers separately-the first difference. 

Two State Series (1 and —1) 

D M1 M2 M3 M4 M5 M7 

y Ax Ay Ax Ay Ax Ay Ax Ay Ax Ax Ay 

12 TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE T FALSE FALSE 
13 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE :ALSE T TRUE TRUE 
14 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T TRUE TRUE 
15 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T TRUE TRUE 
16 TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE T TRUE FALSE 
17 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T E TRUE 
18 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T E TRUE 
19 TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE T E TRUE 
20 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T E TRUE 
21 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T SE FALSE 
22 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T E TRUE 
23 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T E TRUE 
24 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE :ALSE T E TRUE 
25 TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE T E TRUE 

(Š/OC) 100 100 92.86 · 85.7 100 00 85.71 100 78.57 100 78.57 

Hi Sample Partial Autocorrelation Function 

S 1 li i li li li i li li li 
k | | | | | | | | | 
|j | l | | u ı | | 5 O.BL---- |----T----F----E - - NLF----K---a----r----| 
E KER EBIBR 
< o E RGG : |_ |_ } . i+—-— 

% | l | ; l 
d 05 NEGR GRRRIEREERRĆGRERE NEOR GRAG 
o ' ' ' ' ' ' ' ' 
čL ' ' ' ' ' ' ' ' 
E -1 L L L L L • L L L 

-i 0 2 4 6 8 10 12 14 16 18 20 

Lag 

Figure 15. Partial autocorrelation function of time series composed of 1 and —1 values for original 

displacements. 

Table 22. Coefficients of AR(10) process for M4x-original displacements. 

o BR B? Bs Ba Bs B5 B Bs B• Bu 
—0.0543 0.1103 —0.2452 —0.1739 —0.6446 —0.0214 —0.0548 —0.4679 —0.3268 —0.4487 0.4630 

The fitted time series of original displacements of marker M4 along; the x-axis, cor- 

responding; states (see Equation (34)), and model accuracy are shown in Table 23 and 

Figure 16. 

Table 23. Fitted series with corresponding,states, and model accuracy for M4y-original displacements. 

t Fitted Value Fitted State Original State Comparison nTRUE 

11 0.1540 1 -1 FALSE 0 
12 0.7652 1 1 TRUE 1 
13 —0.7061 -1 -1 TRUE 1 
14 —1.6561 -1 -1 TRUE 1 
15 —0.2955 -1 -1 TRUE 1 
16 —0.5505 -1 -1 TRUE 1 
17 1.0495 1 1 TRUE 1 
18 0.3156 1 1 TRUE 1 
19 0.5788 1 1 TRUE 1 
20 1.4106 1 1 TRUE 1 
21 —1.0484 -1 -1 TRUE 1 
22 0.5116 1 1 TRUE 1 
23 0.1869 1 1 TRUE 1 
24 —0.8914 -1 -1 TRUE 1 
25 —0.8242 -1 -1 TRUE 1 

Accuracy: 100 x (14/(25 — 10)) = 93.33% Sum 14 
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Figure 16. Monitored and fitted two state series for M4y-original series. 

The accuracy of the model for forecasting, two-state series of marker M4x, using the 

AR(10) process, is presented in Table 24. 

Table 24. Forecasted the first difference and monitored two-state series for M4x. 

The First Difference Monitored Values 

Original Forecasted : TRUE Original Forecasted : TRUE 
t State State Comparison n State State Comparison n 

26 1 1 TRUE 1 -1 -1 TRUE 1 
27 1 -1 FALSE 0 -1 -1 TRUE 1 

28 -1 -1 TRUE 1 -1 1 FALSE 0 
29 -1 -1 TRUE 1 -1 1 FALSE 0 
30 1 -1 FALSE 0 1 1 TRUE 1 

Accuracy: 100 x (3/5) = 60% Accuracy: 100 x (3/5) = 60% 

We proposed Table 25 to express the accuracy of the AR(p) two-state model in a 

linguistic way. 

Table 25. Linguistic description of model accuracy for two-state series. 

Linguistic Description AC (%) 

High accuracy (75–100| 
Good accuracy (50—75] 

Reasonable accuracy (25—50] 

Inaccurate <25 

The accuracy of the forecasted two-state series for all markers, regarding, the first 

difference, is shown in Table 26. 

The expected accuracy of the AR(10) model, for the first difference, is 57.14%. Accord- 

ing to Table 26, we can conclude the model is classified as good, and can be applied to 

forecast the first difference two-state series. 

Furthermore, outcomes of forecasting beyond t = 25 for displacements of marker M4 

along the x-axis are presented in Table 27.
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Table 26. Accuracy of AR(10) model for all markers separately forecasted the first difference. 

Two State Series (1 and —1) 

D M1 M2 M3 M4 M5 M6 M7 
a 
y Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay 

26 TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE 

27 TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE 

28 TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE 

29 TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE 

30 TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE 

EŽ/C) 100 60 40 60 20 80 60 60 80 60 40 60 60 20 
(Q 

Table 27. Forecasted displacements of marker M4 along x-axis. 

Ka) Ki() Monitored t AX(t) - O(t _ AX(t - Oniiore! APE(%) kie|-1,1} Q(t) kŽE[fl,l] (0) Displacement 

Equations (33) Equations Equations (33) ; 
AP Td (34) (9)-(}Dand(3) ~  and(34) Bauation G7) 
26 AXx -1 0.15%* 1 —1·|-4.4 + 1·0.15| = —4.25 —4.6 7.60 

27 AXo7 -1 0.14* -1 —1·|-4.25 — 1·0.14| = —4.39 -4.8 8.54 

28 | AXg 1 0.15* -1 1.|—4.39 — 1.0.15| = 4.54 -44 203.18 
29 AXo9 1 0.14* -1 1.|4.54 — 1·0.14| = 4.40 -4.2 204.76 

30 | AX\30 1 0.13* -1 1.|4.40 — 1-0.13| = 4.27 44 2.95 

* red color indicates forecasted values. 

Mean absolute percentagjee  error equals 85.41%. That is to be expected; if the model 

gets just one state wrong, then the forecast error increases significantly. Forecasted displace- 

ments for all markers and corresponding; errors are presented in Table 28. 

Table 28. Forecasted displacements for all markers separately. 

D M1 M2 M3 M4 M5 M6 M7 

4 Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay 

26 3.33  -—3.73 3.68 3.68 4.22 -4.x72 -425 -442 -418 -383 -416 -441 —3.73 —3.75 
27 350 · —3.87 3.46 3.46 4.40 -453 -439 -459 -429 -410 -400 -420 —3.8. —3.60 
28 3.33  —3.73 3.23 3.23 4.22 -435 -454 -443 -440 -383 -384 -399 —3.98 —3.75 
29 350 · —3.60 3.47 3.47 4.04 -4,54 4.40 -4.27 -451 -411 -400 —3.78 —3.8. —3.60 
30 3.68  —3.73 3.71 3.71 4.22 —4.35 4.27 -443 -440 -384 -416 —357 —3.74 —3.45 

MAPE (%) 1.53 3.04 9.70 9.46 5.71 5.23 85.41 3.80 3.36 8.38 5.05 9.76 #8.74 5.39 

The MAPE of the forecasting, model is 11.75%, and the model belongs to the good 

accuracy class (see Table 1), even though the error of M4xy is 85.41%. Suppose the model 

got all the states wrong; in that case, the MAPE of M4x is 197.84%, and the MAPE of the 

forecasting, model is 19.78%. 

The application of APE to express the efficiency of the model only in the context of 

a time series is a very rigorous approach, with respect to the environment of forecasting, 

displacements of markers. From a mining, engineering, point of view, the position fore- 

casting, of a marker presents a desired target. Accordingly, the mean absolute percentage 

error of marker position is a more suitable way to estimate the accuracy of the forecasting, 

model. Table 29 contains coordinates of markers obtained by the model for t = 25, 26, ... , 

30 (forecasting-validity phase).
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Table 29. Forecasted coordinates of markers (forecasting-validity phase). 

Two State Series (1 and—1) 

M1 M2 M3 M4 M5 M6 M7 

Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay 

26 90.5 88553 2263 26315 6124 3187.7 1797.3 3678.0 2788.2 3189.7 31758 2628.7 . 3308.9 888.7 

27 94.0 8814  229.8 2627.3 6168 3183.2 1792.9 3673.4 2783.9 31856 3171.8 2624.5 3305.0 &885.0 

28 97.3 877.6  233.0 2623.0 621.1 31788 1797.4 3669.0 2779.5 3181.7 3168.0 26205 3301.0 &881.3 

29 100.8  874.0 2365 26185 6251 3174.3 1801.8 3664.7 2775.0 3177.6 3164.0 26167 3297.2  877.7 

30 104.5  870.3 · 240.2 2614.2 629.3  3170.0 1806.1 3660.3 2770.6 3173.7 3159.9 2613.1 3293.5 &874.2 

Day 

The comparison of steel arch support between the monitored, fitted, and forecasted 

shapes is presented in Figure 17. 

——t=0 ——t=10 measured t=10 fitted 
_— t=25 measured —e—t=25 fitted —e—t=30 measured 
——t=30 forecasted 
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Figure 17. Steel arch support shape for t = 0, 10, 25, 30 days (monitored, fitted, and forecasted data). 

Calculation of model efficiency, which is based on the position error of a marker, is 

presented in a few successive steps, and we also used marker M4 as an illustrative marker 

for t = 10: 

Step 1: input data: 

– _ monitored position of marker M4, defined by coordinates, is M(x,y) = (1691.0, 3753.4); 

- fitted position of marker M4, defined by coordinates, is M(x,y) = (1735.7, 3754.0); 

- monitored position vector of marker M4 is Ry = 1691.0! + 3753.4J; 

- fitted position vector of marker M4 is Ry, = 1735.71 + 3754.0 J. 

Step 2: the projection of fitted position vector on monitored position vector 

1691.0:1735.7+3753.4.3754.0 . 

V1691.0?+3753.42. V1691.0?+3753.42 (1691.0,3753.4) (54) 
— — 

= 1698.8 ! + 3770.6 J 

— —> 
PuM = proj+ RM 

RM
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— d 
Step 3: magnitude of the vector Ry and P 

_+ 
Rum| = 4116.7 

— (55) 
Pu| = 4135.6 

Step 4: Absolute percentage error of marker position 

> |4116.7 — 4135.6| 
.459% APE(\ Pr t:lo) 100 x 41167 0.459 (56) 

Applying, the same calculation on all markers, we obtain the following, errors in 

Table 30. 

Table 30. Marker position error. 

MAPE (%) 

Phase M1 M2 M3 M4 M5 M6 M7 

Fitting, 0.064 0.023 0.003 0.677 0.007 0.010 0.010 

Forecasting, 0.081 0.021 0.013 1.314 0.027 0.031 0.013 

The MAPE of the fitting, and forecasting  model is 0.113% and 0.2143%, respectively. 

4. Conclusions 

The stability of the underground roadways (headings, galleries, drifts, gate roads, 

and drives) is crucial for the smooth operation of a mine. When underground roadways 

are constructed in complex geological conditions and in a weak rock mass, installation of 

adequate support construction is necessary for the stability maintenance of the roadways 

in order to provide its functionality during, exploitation time. Even then, mostly due to 

the influence of the dynamic loads from the rock mass, the deformations of the walls and 

arch of the underground roadways occur. These deformations are also represented in 

the support construction. Steel arch support is the most used support construction in the 

headings and gate roads in underground coal mines. As the deformations of the steel arch 

support cause the shrinking of the cross-section area of the underground roadways, it is 

important to monitor and forecast the deformations of the sections that can jeopardize the 

planned work cycle. 

In this paper, we presented a forecasting model based on the grey system theory, which 

observes the deformations of markers placed on a steel arch support. By measuring the 

coordinates of the marker in a defined period (25 days), data on the position of the marker 

are obtained, as well as the increment of the deformations along the y- and y-axis each day. 

Increments of the deformations along the y- and v-axis are observed as two univariate time 

series, which are later used for the forecasting of the future states of the markers, i.e., the 

steel arch support. 

The previous chapter detailed our model, which gave a MAPE of forecasting of 11.75% 

in the case when the error was analyzed from a time series point of view. With such an error, 

the model accuracy is described as good. As the nature of the described problem is such 

that the position of the marker, i.e., the future position of the underground construction, is 

of importance to mining engineers, we introduced the analysis of the error of the marker 

position to evaluate the effectiveness of the model. The MAPE of the forecasting, model is 

0.2143%, and in that term, the model accuracy is described as high. For the autoregressive 

model, the proposed window length of p * T/2 — 2 showed high accuracy (92.34%) for the 

AR(10) model for fitted data of corresponding states, while it showed reasonable accuracy 

(57.14%) for the same model for the validity (forecasting) phase. One of the focuses of 

future research will be the definition of the optimal window length for an autoregressive 
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model to achieve greater accuracy of the model in general. The development of a smart 

rolling: model is also planned to make the model more user-friendly. 

This model can be used by mining engineers in underground coal mines for accurate 

forecasting, of the future states of the steel arch support. Using this model, it is possible to 

plan the maintenance of underground roadways more efficiently, which further results in 

fewer stoppages in the process of coal production and lower operating, costs of the mine. 

Author Contributions: Conceptualization, L.C. and Z.G.; methodology, L.C.; software, L.C.; vali- 

dation, S.L., R.T. and M.G.; formal analysis, Z.G.; data curation, L.C. and M.G.; writing—original 

draft preparation, L.C.; writing:—review and editing, S.L. and R.T.; visualization, L.C. and Z.G.; 

supervision, Z.G. All authors have read and agreed to the published version of the manuscript. 

Funding; This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. · Wu,Q. Yan, B.; Zhang, C.; Wang, L.; Ning, G.; Yu, B. Displacement Prediction of Tunnel Surrounding, Rock: A Comparison of 

Support Vector Machine and Artificial Neural Network. Math. Probl. Eng. 2014, 2014, 351496. [CrossRet] 

2. Luo, X.; Gan, W.; Wang, L.; Chen, Y.; Ma, E. A Deep Learning Prediction Model for Structural Deformation Based on Temporal 

Convolutional Networks. Comput. Itell. Neurosci. 2021, 2021, 829639. [CrossRef] 

3. Luan, Y.; Weng, L.; Ma, Y.; Luan, H. Lake-Bottom Deformation Special Equipment Measurement Methods and Practice of Mining, 

Under Weishan Lake. Electron. J. Geotech. Eng. 2017, 22, 1363—1376. Available online: https:/ /web.archive.org,/web/2018042707 

546id_/http:/ /www.ejge.com/2017/ Ppr2017.0110ma.pdf (accessed on 15 December 2022). 

4.  Ma, X. Xue, Y.; Bai, C.; Liu, H.; Yu, Y. Prediction Model for Deformation Risk Grade of the Soft Rock Tunnel Based on 

GRA—kRxtension. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 052057. [CrossRef] 

5. Rao, J.; Tao, Y.; Xiong, P.; Nie, C.; Peng, H.; Xue, Y.; Xi, Z. Research on the Large Deformation Prediction Model and Supporting, 

Measures of Soft Rock Tunnel. Ađdov. Civ. Eng. 2020, 2020, 6630546. [CrossRer] 

6. _ Guo,Y.; Zhao, M.; Deng, Z. Tunnel surrounding rock deformation forecast analysis based on GM and FEM. Electron. J. Geotech. 

Eng. 2014, 19, 1379–-1394. 

7. Han, U.; Choe, C.; Hong, K.; Pak, C. Prediction of Final Displacement of Tunnels in Time-Dependent Rock Mass Based on the 

Nonequidistant Grey Verhulst Model. Math. Probl. Eng. 2022, 2022, 3241171. [CrossRef] 

8.  Xiong,X.Researcth on Grey System Model and Its Application on Displacement Prediction in Tunnel Surrounding, Rock. Open 

Mech. Eng. J. 2014, 8, 514-518. [CrossRef] 

9. · Zhang,L.;Chen,X.; Zhang, Y.; Wu, E;; Chen, E; Wang, W.; Guo, E. Application of GWO-ELM Model to Prediction of Caojiatuo 

Landslide Displacement in the Three Gorge Reservoir Area. Water 2020, 12, 1860. [CrossRet] 

10. Wu,L.Z.; Li, S.H.; Huang, R.Q.; Xu, Q. A new grey prediction model and its application to predicting, landslide displacement. 

Appl. Soft Comput. 2020, 95, 106543. [CrossRef] 

11. Li,S.; Wu, N. A new grey prediction model and its application in landslide displacement prediction. Chaos Solitons Fractals 2021, 

147, 110969. [CrossRef] 

12. Li,L.; Qiang, Y.; Li, S.; Yang, Z. Research on Slope Deformation Prediction Based on Fractional-Order Calculus Gray Model. Adv. 

Civ. Eng. 2018, 2018, 9526216. [CrossRef] 

13. Zhang, W.; Xiao, R.; Shi, B.; Zhu, H.; Sun, Y. Forecasting, slope deformation field using, correlated grey model updated with time 

correction factor and background value optimization. Eng. Geol. 2019, 260, 105215. [CrossRef] 

14. Crnogorac, L.; Tokalić, R.; Gligorić, Z.; Milutinović, A.; Lutovac, S.; Ganić, A. Gate Road Support Deformation Forecasting, Based 

on Multivariate Singular Spectrum Analysis and Fuzzy Time Series. Energies 2021, 14, 3710. [CrossRef] 

15. Zhu,Z.;Li, H.; Shang, J.; Wang, W.; Liu, J. Research on the mining roadway displacement forecasting, based on support vector 

machine theory. J. Coal Sci. Eng. 2010, 16, 235–239. [CrossRet] 

16. Xie,J.Xu,J.; Zhu,W. Gray algebraic curve model-based roof separation prediction method for the warning of roof fall accidents. 

Arab. J. Geosci. 2016, 9, 514. [CrossRef] 

17. Ju-Long, D.Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [CrossRet] 

18. Deng,J.Grey Control Svstems; Press of Huazhong, University of Science and Technology: Wuhan, China, 1985. 

19. Deng,J.Introduction to Grey system theory. J. Grey Svyst. 1989, 1, 1–-24. 

20. Liu,S.;Forrest,J.; Yang, Y. A brief introduction to grey systems theory. Grey Svst. Theory Appl. 2012, 2, 89-104. [CrossRef]



AAppl. Sci. 2023, 13, 4559 29 of 29 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

Gligorić, Z.; Gligorić, M.; Halilović, D.; Beljić, Č.; Urošević, K. Hybrid Stochastic-Grey Model to Forecast the Behavior of Metal 

Price in the Mining, Industry. Sustainability 2020, 12, 6533. [CrossRef] 

Maruyama, G. Continuous Markov processes and stochastic equations. Rendiconti Circolo Mat. Palermo 1955, 4, 48-90. [CrossRef] 

MontaRfio Moreno, J.J.; Palmer Pol, A.; Sesć Abad, A.; Cajal Blasco, B. Using the R-MAPE index as a resistant measure of forecast 

accuracy. Psicothema 2013, 25, 500–506. [PubMed] 

Lewis, C.D. Industrial and Business Forecasting Methods; Butterworth Scientific: London, UK, 1982. 

Khan, M.; Poskitt, D. Window Lengtth Selection and Signal-Noise Separation and Reconstruction in Singular Spectrum Analysis. 

In Monash Econometrics and Business Statistics Working Papers; No 23/11; Monash University, Department of Econometrics and 

Business Statistics: Melbourne, Australia, 2011. 

Wang, R.; Ma, H.; Liu, G.; Zuo, D. Selection of window length for singular spectrum analysis. J. Frankl. Inst. 2015, 352, 1541—1560. 

CrossRef] 

Hassani, H.; Mahmoudvand, R.; Zokaei, M. Separability and window length in singular spectrum analysis. Comptes Rendus Math. 

2011, 349, 987—990. [CrossRef] 

Wooldridge, J. Introductory Econometrics: A Modern Approach, 5th ed.; South-Western Cengage Learning: Mason, OH, USA, 2012; 

Pp. 432-433. ISBN 13 978-1-111-53104-1. 

Lee, S.; Rizal, S.; Ahn, H. Analysis of the Position Estimation Error of a Local Positioning, System utilizing, Mobile Anchors. 

Preprints 2018, 2018100086. [CrossRef] 

Zeng, Y.; Tian, W.; Liao, W. Positional error similarity analysis for error compensation of industrial robots. Robot. Comput. Integr. 

Manuf. 2016, 42, 113–120. [CrossRef] 

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting, from any ideas, methods, instructions or products referred to in the content.


